- Bài 1: Giới thiệu về Machine Learning
- Bài 2: Machine Learning - AI ngày nay có thể làm gì?
- Bài 3: Machine Learning - AI truyền thống
- Bài 4: Machine Learning - Machine Learning là gì?
- Bài 5: Machine Learning - Phân loại
- Bài 6: Machine Learning - Phân loại (p2)
- Bài 7: Machine Learning - Supervised Learning
- Bài 8: Machine Learning - Thư viện Scikit learn
- Bài 9: Machine Learning - Unsupervised learning
- Bài 10: Machine Learning - Artificial Neural Networks
- Bài 11: Machine Learning - Deep Learning
- Bài 12: Machine Learning - Skills
- Bài 13: Machine Learning - Implementing
- Bài 14: Khởi đầu với neural network
- Bài 15: Xử lý ảnh sử dụng Neural Network
- Bài 16: Mạng neuron tích chập
- Bài 17: Machine Learning - Kết luận
- Bài 18: Rút gọn : Phần 1
- Bài 19: Rút gọn - phần 2
- Bài 20: Rút gọn - phần 3
Bài 2: Machine Learning - AI ngày nay có thể làm gì? - AI - Machine Learning cơ bản
Đăng bởi: Admin | Lượt xem: 2022 | Chuyên mục: Machine Learning
Khi bạn tag một khuôn mặt trong ảnh của Facebook, AI chạy thuật toán bên dưới và nhận diện các khuôn mặt có trong bức ảnh đó. Gắn thẻ khuôn mặt có mặt khắp mọi nơi, trong một số ứng dụng hiển thị ảnh có khuôn mặt con người . Tại sao chỉ nhận diện khuôn mặt con người ? Có một số ứng dụng phát hiện ra các đối tượng như chó, mèo, hoa, ô tô,...Ngoài ra còn được sử dụng ô tô tự lái chạy trên đường, có khả năng phát hiện và tránh các đối tượng trong thời gian thực điều khiển xe. Ngoài ra, khi bạn đi du lịch, bạn sử dụng Google Map để tìm hiểu các tình huống về thời gian trong thời gian thực và được khuyến khích đi con đường tốt nhất do Google đề xuất tại thời điểm đó. Đó đều là những ứng dụng đều được khai thác bởi kỹ thuật phát hiện đối tượng trong thời gian thực
Sau đây, ta hãy cùng xem xét các ví dụ về ứng dụng Google dịch mà ta thường xuyên sử dụng khi tra các từ phục vụ học tập hoặc là đến các quốc gia khác. Ứng dụng dịch trực tuyến của Google trên điện thoại giúp ta có thể dễ dàng giao tiếp với người dân địa phương nói ngôn ngữ xa lạ với ta.
Có một số ứng dụng của AI mà chúng ta sử dụng thực tế ngày nay. Trên thực tế, mỗi người trong chúng ta đều sử dụng AI trong nhiều phần của cuộc sống, ngay cả khi ta không hề hay biết. AI ngày nay có thể thực hiện được các công việc cực kỳ phức tạp với độ chính xác và tốc độ cao. Ta sẽ cùng nói về một vào nhiệm vụ phức tạp để hiểu những khả năng mà ứng dụng AI có thể làm được
Tất cả chúng ta đều sử dụng Google Map trong việc di chuyển trong thành phố hằng ngày. Ứng dụng Google Map gợi ý đường dẫn nhanh nhất để đến điểm cần dến tại thời điểm đó. Khi ta đi theo con đường này, ta nhận ra rằng Google đã gần như đúng 100% trong các đề xuất của mình và ta tiết kiệm được thời gian của mình trong việc di chuyển
Bạn có thể hình dung được sự phức tạp liên quan đến việc phát triển loại ứng dụng này vì có nhiều con đường dẫn đến điểm đến và ứng dụng phải phán đoán tình hình giao thông ở mọi con đường , cung cấp cho bạn ước tính thời gian di chuyển cho mỗi con đường như vậy. Bên cạnh đó, hãy xem xét thực tế là Google Map bao phủ toàn bộ địa cầu. Không nghi ngờ gì nữa, rất nhiều kỹ thuật AI và máy học đang được sử dụng dưới lớp vỏ của các ứng dụng như vậy
Xem xét nhu cầu liên tục về sự phát triển của các ứng dụng như vậy, giờ đây bạn sẽ hiểu tại sao lại có nhu cầu đột ngột về các chuyên gia CNTT có kỹ năng AI
Trong bài tiếp theo, ta sẽ cùng tìm hiểu những gì cần thiết để phát triển các chương trình AI
Theo dõi VnCoder trên Facebook, để cập nhật những bài viết, tin tức và khoá học mới nhất!
- Bài 1: Giới thiệu về Machine Learning
- Bài 2: Machine Learning - AI ngày nay có thể làm gì?
- Bài 3: Machine Learning - AI truyền thống
- Bài 4: Machine Learning - Machine Learning là gì?
- Bài 5: Machine Learning - Phân loại
- Bài 6: Machine Learning - Phân loại (p2)
- Bài 7: Machine Learning - Supervised Learning
- Bài 8: Machine Learning - Thư viện Scikit learn
- Bài 9: Machine Learning - Unsupervised learning
- Bài 10: Machine Learning - Artificial Neural Networks
- Bài 11: Machine Learning - Deep Learning
- Bài 12: Machine Learning - Skills
- Bài 13: Machine Learning - Implementing
- Bài 14: Khởi đầu với neural network
- Bài 15: Xử lý ảnh sử dụng Neural Network
- Bài 16: Mạng neuron tích chập
- Bài 17: Machine Learning - Kết luận
- Bài 18: Rút gọn : Phần 1
- Bài 19: Rút gọn - phần 2
- Bài 20: Rút gọn - phần 3