Bài 18: Word Embedding - Pytorch Cơ bản

Đăng bởi: Admin | Lượt xem: 1635 | Chuyên mục: AI


Ta sẽ tìm hiểu về mô hình nhúng từ(Word Embedding) nổi tiếng - word2vec. Mô hình Word2vec được sử dụng để tạo nhúng từ với sự trợ giúp của nhóm các mô hình liên quan. Mô hình Word2vec được triển khai bằng mã C thuần túy và gradient được tính toán thủ công.
Việc triển khai mô hình word2vec trong PyTorch được giải thích trong các bước dưới đây:

Bước 1

Import các thư viện cần thiết :
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F

Bước 2

Triển khai Mô hình nhúng từ vựng Skip Gram với lớp có tên là word2vec. Nó bao gồm loại thuộc tính emb_size, emb_dimension, u_embedding, v_embedding.
class SkipGramModel(nn.Module):
   def __init__(self, emb_size, emb_dimension):
      super(SkipGramModel, self).__init__()
      self.emb_size = emb_size
      self.emb_dimension = emb_dimension
      self.u_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True)
      self.v_embeddings = nn.Embedding(emb_size, emb_dimension, sparse = True)
      self.init_emb()
   def init_emb(self):
      initrange = 0.5 / self.emb_dimension
      self.u_embeddings.weight.data.uniform_(-initrange, initrange)
      self.v_embeddings.weight.data.uniform_(-0, 0)
   def forward(self, pos_u, pos_v, neg_v):
      emb_u = self.u_embeddings(pos_u)
      emb_v = self.v_embeddings(pos_v)
      score = torch.mul(emb_u, emb_v).squeeze()
      score = torch.sum(score, dim = 1)
      score = F.logsigmoid(score)
      neg_emb_v = self.v_embeddings(neg_v)
      neg_score = torch.bmm(neg_emb_v, emb_u.unsqueeze(2)).squeeze()
      neg_score = F.logsigmoid(-1 * neg_score)
      return -1 * (torch.sum(score)+torch.sum(neg_score))
   def save_embedding(self, id2word, file_name, use_cuda):
      if use_cuda:
         embedding = self.u_embeddings.weight.cpu().data.numpy()
      else:
         embedding = self.u_embeddings.weight.data.numpy()
      fout = open(file_name, 'w')
      fout.write('%d %d\n' % (len(id2word), self.emb_dimension))
      for wid, w in id2word.items():
         e = embedding[wid]
         e = ' '.join(map(lambda x: str(x), e))
         fout.write('%s %s\n' % (w, e))
def test():
   model = SkipGramModel(100, 100)
   id2word = dict()
   for i in range(100):
      id2word[i] = str(i)
   model.save_embedding(id2word)

Bước 3 :

Triển khai phương thức chính để mô hình nhúng từ được hiển thị theo cách thích hợp.
if __name__  ==  '__main__':
   test()
Bài tiếp theo: Recursive Neural Networks >>
vncoder logo

Theo dõi VnCoder trên Facebook, để cập nhật những bài viết, tin tức và khoá học mới nhất!